Closing Thu: TN 2, TN 3

TN 2 \& 3: Higher order approx.

Recall: $1^{\text {st }}$ Taylor polynomial
$T_{1}(x)=f(b)+f^{\prime}(b)(x-b)$
Error Bound
On interval $[\mathrm{a}, \mathrm{b}]$, if $\left|f^{\prime \prime}(x)\right| \leq M$, then $\left|f(x)-T_{1}(x)\right| \leq \frac{M}{2}|x-b|^{2}$.

Entry Task: Let $f(x)=x^{1 / 3}$.
(a) Find the $1^{\text {st }}$ Taylor Polynomial based at $b=8$.
(b) Give a bound on the error over the interval $[7,9]$.
$2^{\text {nd }}$ Taylor Polynomial is given by
$T_{2}(x)=f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}$

Quadratic error bound theorem

On interval $[\mathrm{a}, \mathrm{b}]$, if $\left|f^{\prime \prime \prime}(x)\right| \leq M$, then $\left|f(x)-T_{2}(x)\right| \leq \frac{M}{6}|x-b|^{3}$.

Example:
Find the $2^{\text {nd }}$ Taylor polynomial for
$f(x)=x^{1 / 3}$ based at $\mathrm{b}=8$ and find
an error bound on the interval $[7,9]$.

Taylor Approximation Idea:
If two functions have all the same derivative values, then they are the same function (up to a constant). Let's compare derivatives of $f(x)$ and $T_{2}(x)$ at b.

$$
\begin{array}{lll}
T_{2}(x) & =f(b)+f^{\prime}(b)(x-b) & +\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2} \\
T_{2}^{\prime}(x) & =0+f^{\prime}(b) & +f^{\prime \prime}(b)(x-b) \\
T_{2}^{\prime \prime}(x) & =0+0 & +f^{\prime \prime}(b)
\end{array}
$$

$T_{2}^{\prime \prime \prime}(x)=0$

Now plug in $x=b$ to each of these.

- What do you see?
- Why did we need a $1 / 2$?
- What would $T_{3}(x)$ look like?
- What would $T_{4}(x)$ look like?
($T_{5}(x)$?, $T_{6}(x)$?...)
$\mathbf{n}^{\text {th }}$ Taylor polynomial
$f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(b)(x-b)^{3}+\cdots+\frac{1}{n!} f^{(n)}(b)(x-b)^{n}$

In sigma notation:

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}
$$

Example: Find the $9^{\text {th }}$ Taylor polynomial for $f(x)=e^{x}$ based at $b=0$, and give an error bound on the interval $[-2,2]$.

Taylor's Inequality (error bound): on a given interval $[\mathrm{a}, \mathrm{b}]$,

$$
\begin{aligned}
& \text { if }\left|f^{(n+1)}(x)\right| \leq M, \text { then } \\
& \qquad\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=e^{x} \text { and } \\
& \mathrm{T}_{1}(\mathrm{x}), \mathrm{T}_{2}(\mathrm{x}), \mathrm{T}_{3}(\mathrm{x}), \mathrm{T}_{4}(\mathrm{x}), \mathrm{T}_{5}(\mathrm{x})
\end{aligned}
$$

Example: Again consider,

$$
f(x)=e^{x} \text { based at } b=0
$$

Find the first value of n when
Taylor's inequality gives an error less than 0.0001 on $[-2,2]$.

Side Note:
For a fixed constant, a, the expression $\frac{a^{k}}{k!}$ goes to zero as kgoes to infinity.

So the expression $\frac{1}{(n+1)!}|x-b|^{n+1}$, will always go to zero as n gets bigger.

Which means that the error goes to zero, unless something unusual is happening with M, which will see in examples later.

TN 4: Taylor Series

Def' n : The Taylor Series for $\mathrm{f}(\mathrm{x})$ based at b is defined by
$\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}=\lim _{n \rightarrow \infty} T_{n}(x)$
Note: If

$$
\lim _{n \rightarrow \infty} \frac{M}{(n+1)!}|x-b|^{n+1}=0
$$

then x is in the open interval of convergence.

If the limit exists at x, then we say it converges at x. (i.e. the error goes to zero at x)

Otherwise, we say it diverges at x .
The open interval of convergence gives the largest open interval over which the series converges.

